
https://www.ida.liu.se/~TDDI11	 Embedded	Software	 1	

	

Chapter	5		Polling	and	Interrupt-Driven	I/O	

In	this	chapter	we	work	with	serial-port	read	and	write	operations	in	Assembly.	We	become	aware	of	the	
various	ways	to	communicate	with	the	peripherals.	Understand	their	advantages	and	disadvantages.	The	
related	files	are	in	the	following	directory:	

/home/TDDI11/lab/skel/lab3	

Please	copy	them	as	usual	to	your	own	account.	Your	modifications	go	to	“serial.asm”.	

1.1 Assignment	

You	use	a	program	that	reads	characters	typed	on	the	keyboard	and	sends	the	read	characters	on	the	
serial	interface.	Another	computer	will	be	connected	to	this	serial	communication	line	through	its	serial	
port.	This	second	computer	reads	the	port	and	prints	the	received	characters	on	the	screen.	The	second	
computer	can	read	the	keyboard	and	send	the	read	characters	serially	to	the	first	computer.	At	the	same	
time,	 both	 computers	 display	 characters	 read	 from	 the	 serial	 interface.	 Both	 computers,	 display	 in	 a	
separate	window,	the	typed	character	read	from	their	own	keyboards.	In	principle	the	programs	for	the	
first	and	second	computer	are	identical.	

You	will	develop	assembly	code	to	write	the	serial	port	by	polling.	With	polling	you	continuously	test	a	bit	
of	a	register.	If	the	bit	is	not	set,	the	serial	interface	is	busy	sending	another	character,	and	therefore	you	
should	not	write	the	new	character	to	the	serial	interface.	If	the	bit	is	set,	the	serial	interface	is	accepting	
new	characters	to	be	sent	(transmitted).	

Write	 the	assembly	code	to	 read	characters	 from	the	serial	 interface	by	 interrupts.	Upon	receiving	an	
interrupt,	the	serial	interface	controller	notifies	the	CPU	by	means	of	an	interrupt.	The	serial	port	share	
interrupt	signal	with	other	devices,	 so	you	must	still	 check	 that	a	byte	 really	arrived	at	 the	serial	port	
before	reading	it.	

Edit	the	file	“serial.asm”	to	fill-in	the	missing	details	of	the	polled	waiting-loop	output	function	(SerialPut)	
and	the	serial	input	ISR	(SerialISR).	

In	order	to	be	able	to	test	the	program,	you	need	to	emulate	two	computers	connected	by	a	serial	line.	
You	may	check	the	“makeNrun.sh”	to	see	how	this	is	done.	You	will	only	need	to	implement	the	methods	
“SerialPut”	and	the	“SerialISR”	in	“serial.asm”	file.	

1.2 Deliverables	

The	file	is	“serial.asm”.	The	code	written	in	“SerialPut”	and	“SerialISR”	sections.	Demo	for	the	lab	assistant.	

Fill	and	send	in	the	feedback	questionnaire.	

	



https://www.ida.liu.se/~TDDI11	 Embedded	Software	 2	

1.3 Background	

We	discuss	two	ways	of	communicating	with	peripherals:	polling	and	interrupts.	

Polling	means	continuously	checking	the	peripheral	to	detect	if	it	has	changed	state.	For	example,	if	the	
keyboard	 is	 expected	 to	 place	 the	 ASCII	 code	 of	 a	 pressed	 key	 in	 a	 certain	 register	 of	 the	 keyboard	
controller,	polling	would	imply	continuously	reading	that	register	to	see	if	the	value	changes.	We	can	see	
immediately	the	disadvantage:	instead	of	using	the	processor	to	do	something	useful,	we	waste	resources	
checking	something	that	happens	with	a	low	rate.	

An	 alternative	 to	 polling	 is	 interrupt-driven	 communication.	 Instead	 of	 the	 processor	 checking	 the	
peripheral	each	time,	the	peripheral	notifies	the	processor	if	its	state	has	changed.	The	peripheral	sends	
a	 signal	 that	 interrupts	 the	 execution	of	 the	 processor.	 The	 execution	 jumps	 to	 a	 predefined	 address	
where	the	Interrupt	Service	Routine	(ISR)	must	reside.	The	ISR	implements	the	response	to	the	interrupt.	
In	this	way,	the	processor	does	not	need	to	frequently	check	the	peripherals.	

Nevertheless,	polling	may	have	advantages	too.	For	example,	there	might	be	intervals	when	we	want	to	
ignore	the	peripheral	and	to	run	uninterrupted.	If	we	used	interrupt-driven	communication	the	processor	
would	be	interrupted	even	if	it	decides	not	to	service	the	interrupt.	Temporarily	disabling	the	interrupts	
may	 not	 be	 a	 good	 idea	 if	 we	want	 not	 to	 be	 interrupted,	 because	we	 could	 be	 interested	 in	 other	
interrupts.	

Polling	can	also	have	advantage	when	communicating	with	a	device	that	operate	almost	as	fast	as	the	
processor.	If	we	use	interrupts	many	cycles	will	go	to	waste	in	the	overhead	of	doing	the	interrupt,	while	
polling	may	be	able	to	read	one	data	every	iteration	in	the	poll	loop.	

In	such	cases	DMA	is	another	solution,	in	which	a	large	block	of	data	is	transferred	to	memory	without	
CPU	 intervention,	 and	 an	 interrupt	 signal	 delivered	when	 the	 transfer	 is	 done,	 and	 the	 CPU	 need	 to	
provide	 a	 new	 empty	 buffer.	While	 the	 new	buffer	 is	 filled,	 the	 CPU	 can	 process	 the	 previous	 buffer	
content	in	parallel.	This	approach	requires	extra	hardware	and	must	be	supported	in	the	platform.	Many	
embedded	platforms	might	not	support	this.	The	main	part	of	the	extra	hardware	is	sometimes	called	a	
DMA	controller.	

1.4 The	IBM-PC	Serial	port	

The	 IBM-PC	 typically	 supports	 two	 (or	more)	 serial	 ports,	 called	 COM1	 and	COM2.	 These	 devices	 are	
implemented	 using	 an	 I/O	 chip	 called	 a	 Universal	 Asynchronous	 Receiver-Transmitter	 (UART).	 UARTs	
convert	 the	 8-bit	 parallel	 format	 used	 inside	 the	 PC	 to	 a	 serial	 formation	 in	 which	 information	 is	
transmitted	one	bit	at	a	time,	and	vice	versa.	This	 is	sometimes	called	serial	to	parallel	and	parallel	to	
serial	conversion.	

Each	serial	port	is	assigned	a	block	of	eight	I/O	port	addresses,	starting	with	a	“base”	address	of	0x2f8,	
0x3F8,	 0x2E8,	 or	 0x3E8.	 These	 addresses	 typically	 correspond	 to	 COM1,	 COM2,	 COM3,	 and	 COM4	
respectively.	These	port	addresses	are	used	with	 I/O	 instructions	 to	write	data	or	 commands	 into	 the	
internal	registers	of	the	UART,	or	to	read	data	or	status	information.	The	three	most	important	registers	
are:	

	 	



https://www.ida.liu.se/~TDDI11	 Embedded	Software	 3	

	

1.	LSR	(Line	Status	Register)	I/O	Port	

Base+5	(Read-Only)	

7 6 5 4 3 2 1 0 

FIFO 
Error 

Transmitter 
Empty 

THRE Break 
Detected 

Framing 
Error 

Parity 
Error 

Overrun 
Error 

RBF 

For	this	lab,	only	two	status	bits	are	important:	

Bit	5,	THRE:	(Transmitter	Holding	Register	Empty):	This	bit	is	1	when	the	UART	is	ready	to	transmit	another	
byte	of	data	out	on	the	serial	line.	Wait	for	this	bit	to	become	1	before	writing	to	THR.	

Bit	0,	RBF:	(Receiver	Buffer	Full):	If	this	bit	is	1,	input	data	is	available	in	RBR.	

2.	THR	(Transmitter	Holding	Register)	I/O	Port	

Base+0	(Write-Only)	Data	to	be	transmitted	serially	to	a	remote	computer	may	be	written	to	this	port	
when	bit	THRE	in	the	LSR	is	1.	

3.	RBR	(Receiver	Buffer	Register)	I/O	Port	

Base+0	(Read-Only)	Data	received	serially	from	a	remote	computer	may	be	read	from	this	port	when	bit	
RBF	in	the	LSR	is	1.	

These	two	registers	(THR	and	RBR),	albeit	being	physically	distinct,	have	the	same	address.	System	can	tell	
them	apart	since	THR	is	write-only	and	RBR	is	read-only.	When	writing	to	this	address,	data	is	copied	to	
THR	and	when	reading	from	this	address,	data	is	copied	from	RBR.	

To	write	a	byte	to	the	serial	port	you	must	first	make	sure	the	device	is	ready.	This	is	done	by	reading	the	
Line	Status	Register	(LSR)	and	extracting	bit	5	which	is	called	Transmitter	Holding	Register	Empty	(THRE).	
If	it	is	“1”	it	means	the	previous	value	in	Transmitter	Holding	Register	(THR)	has	been	transmitted,	and	
you	can	safely	proceed	by	writing	a	new	value	to	the	THR.	If	bit	5	is	not	set	you	must	first	wait	for	it	to	
become	set.	Check/Poll	it	until	the	previous	data	is	transmitted.	

To	read	a	byte	from	the	serial	port	by	using	interrupts,	the	address	to	an	interrupt	handler	must	be	places	
in	the	processors	interrupt	service	vector.	(In	the	lab	this	is	already	done	for	you.)	In	the	interrupt	handler	
you	must	then	determine	what	caused	the	interrupt.	Besides	data	arrival	(getting	a	character	on	the	serial	
line),	other	events	such	as	“break	detected”,	some	errors,	and	so	on	may	cause	interrupts.	To	see	if	a	new	
character	is	available	on	the	serial	port	read	the	Line	Status	Register	(LSR)	and	extract	bit	0	which	is	called	
Receive	Buffer	Full	(RBF).	If	it	is	set,	new	data	has	arrived,	and	you	can	safely	proceed	by	fetching	it	from	
the	base	port.	If	it	is	not	set	it	means	the	interrupt	was	for	something	else	and	you	should	do	nothing	(as	
we	only	 care	about	 the	 serial	port).	 In	both	 cases	you	have	 to	 send	 the	End	Of	 Interrupt	 (EOI)	 to	 the	
interrupt	controller.	This	is	done	by	writing	0x20	to	port	0x20.	

	 	



https://www.ida.liu.se/~TDDI11	 Embedded	Software	 4	

	

1.5 The	x86	I/O	Instructions	

The	80x86	supports	two	I/O	instructions:	“in”	and	“out”.	They	are	like	very	limited	versions	of	the	“mov”	
instruction,	with	 the	major	 difference	 that	 they	 do	 not	 access	 the	 normal	memory	 bus	 (or	 the	 usual	
register	bank),	but	instead	a	special	I/O	bus,	with	65536	I/O	ports	(a	port	is	an	address	on	the	I/O	bus,	but	
named	port	to	distinguish	it	from	a	memory	bus	address).	The	I/O	instructions	take	the	forms:	

in eax/ax/al, port 

in eax/ax/al, dx 

out port, eax/ax/al 

out dx, eax/ax/al 

The	“in”	instruction	must	always	have	(part	of)	eax	as	destination,	and	can	read	the	port	address	either	
as	a	directly	specified	8-bit	port	number	(0	-	0xFF)	or	use	the	full	16-bit	port	number	in	edx.	In	most	cases	
you	must	thus	load	the	port	number	to	edx	first.	The	out	instruction	is	exactly	the	same,	but	reverses	the	
source	and	destination.	Neither	instruction	modifies	any	flags	in	the	flags	register.	

1.6 Resources	

To	better	understand	I/O	with	polling	and	interrupts	the	structure	of	the	x86	system	you	can	read	the	
relevant	chapters	in:	

http://flint.cs.yale.edu/cs422/doc/art-of-asm/pdf/	

Relevant	chapters	are	CH03-6,	CH17-3,	and	CH22-1.	

	

	


